A novel method for analyzing complicated quantum behaviors of light waves in oscillating turbulent plasma
نویسنده
چکیده
Quantum dynamics of light waves traveling through a time-varying turbulent plasma is investigated via the SU(1,1) Lie algebraic approach. Plasma oscillations that accompany time-dependence of electromagnetic parameters of the plasma are considered. In particular, we assume that the conductivity of plasma involves a sinusoidally varying term in addition to a constant one. Regarding the time behavior of electromagnetic parameters in media, the light fields are modeled as a modified CK (Caldirola-Kanai) oscillator that is more complex than the standard CK oscillator. Diverse quantum properties of the system are analyzed under the consideration of time-dependent characteristics of electromagnetic parameters. Quantum energy of the light waves is derived and compared with the counterpart classical energy. Gaussian wave packet of the field whose probability density oscillates with time like that of classical states is constructed through a choice of suitable initial condition and its quantum behavior is investigated in detail. Our development presented here provides a useful way for analyzing time behavior of quantized light in complex plasma.
منابع مشابه
Compressive and rarefactive dust-ion acoustic solitary waves in four components quantum plasma with dust-charge variation
Based on quantum hydrodynamics theory (QHD), the propagation of nonlinear quantum dust-ion acoustic (QDIA) solitary waves in a collision-less, unmagnetized four component quantum plasma consisting of electrons, positrons, ions and stationary negatively charged dust grains with dust charge variation is investigated using reductive perturbation method. The charging current to the dust grains ca...
متن کاملLinear and Nonlinear Dust Acoustic Waves in Quantum Dusty Electron-Positron-Ion Plasma
The behavior of linear and nonlinear dust acoustic waves (DAWs) in an unmagnetized plasma including inertialess electrons and positrons, ions, and mobile positive/negative dust grains are studied. Reductive perturbation method is employed for small and finite amplitude DAWs. To investigate the solitary waves, the Korteweg–de Vries (KdV) equation is derived and the solution is presented. B...
متن کاملImplication of Quantum Effects on Non-Linear Propagation of Electron Plasma Solitons
We have studied the electron exchange-correlation effect on thecharacteristics of the two-component unmagnetized dense quantum plasma withstreaming motion. For this purpose, we have used the quantum hydrodynamic model(including the effects of a quantum statistical Fermi electron temperature) for studyingthe propagation of an electrostatic electron plasma waves in such th...
متن کاملسالیتونهای متراکم و رقیق غبار یون- آکوستیک در پلاسمای کوانتومی چهار مؤلفهای
The propagation of nonlinear quantum dust ion-acoustic (QDIA) solitary waves in a unmagnetized quantum plasma whose constituents are inertialess quantum electrons and positrons, classical cold ions and stationary negative dust grains are studied by deriving the Korteweg–de Vries (KdV) equation under the reductive perturbation method. Quantum Hydrodynamic (QHD) equations are used to take into ...
متن کاملInvestigation of Dust-Ion Acoustic Waves in a Magnetized Collisional Dusty Plasma with Kappa Distribution Function for Electrons
The propagation of arbitrary amplitude dust ion acoustic waves (DIAWs) in a magnetized collisional dusty plasma including hot electrons, with kappa velocity distribution for electrons, warm ions and dust particles has been studied. In the presence of immobile massive dust particulates, DIAWs have been investigated through the Sagdeev pseudo-potential method. It is demonstrated that the amplitud...
متن کامل